Copied to
clipboard

G = C23×C9⋊C6order 432 = 24·33

Direct product of C23 and C9⋊C6

direct product, metabelian, supersoluble, monomial

Aliases: C23×C9⋊C6, C62.52D6, 3- 1+2⋊C24, C9⋊(C23×C6), C18⋊(C22×C6), D9⋊(C22×C6), D184(C2×C6), (C22×C18)⋊4C6, (C23×D9)⋊3C3, (C22×D9)⋊6C6, C32.(S3×C23), (C2×C62).17S3, (C2×3- 1+2)⋊C23, (C23×3- 1+2)⋊2C2, (C22×3- 1+2)⋊3C22, C6.51(S3×C2×C6), (C2×C18)⋊5(C2×C6), C3.3(S3×C22×C6), (C2×C6).74(S3×C6), (C22×C6).36(C3×S3), (C3×C6).49(C22×S3), SmallGroup(432,559)

Series: Derived Chief Lower central Upper central

C1C9 — C23×C9⋊C6
C1C3C93- 1+2C9⋊C6C2×C9⋊C6C22×C9⋊C6 — C23×C9⋊C6
C9 — C23×C9⋊C6
C1C23

Generators and relations for C23×C9⋊C6
 G = < a,b,c,d,e | a2=b2=c2=d9=e6=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d2 >

Subgroups: 1486 in 418 conjugacy classes, 182 normal (12 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C23, C9, C9, C32, D6, C2×C6, C2×C6, C24, D9, C18, C18, C3×S3, C3×C6, C22×S3, C22×C6, C22×C6, 3- 1+2, D18, C2×C18, C2×C18, S3×C6, C62, S3×C23, C23×C6, C9⋊C6, C2×3- 1+2, C22×D9, C22×C18, C22×C18, S3×C2×C6, C2×C62, C2×C9⋊C6, C22×3- 1+2, C23×D9, S3×C22×C6, C22×C9⋊C6, C23×3- 1+2, C23×C9⋊C6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2×C6, C24, C3×S3, C22×S3, C22×C6, S3×C6, S3×C23, C23×C6, C9⋊C6, S3×C2×C6, C2×C9⋊C6, S3×C22×C6, C22×C9⋊C6, C23×C9⋊C6

Smallest permutation representation of C23×C9⋊C6
On 72 points
Generators in S72
(1 47)(2 48)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 46)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 64)(20 65)(21 66)(22 67)(23 68)(24 69)(25 70)(26 71)(27 72)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 28)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 55)(47 56)(48 57)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 10)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 29)(2 34 8 28 5 31)(3 30 6 36 9 33)(4 35)(7 32)(10 24 13 21 16 27)(11 20)(12 25 18 19 15 22)(14 26)(17 23)(37 69 40 66 43 72)(38 65)(39 70 45 64 42 67)(41 71)(44 68)(46 60 49 57 52 63)(47 56)(48 61 54 55 51 58)(50 62)(53 59)

G:=sub<Sym(72)| (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,46)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,28)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,10)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,29)(2,34,8,28,5,31)(3,30,6,36,9,33)(4,35)(7,32)(10,24,13,21,16,27)(11,20)(12,25,18,19,15,22)(14,26)(17,23)(37,69,40,66,43,72)(38,65)(39,70,45,64,42,67)(41,71)(44,68)(46,60,49,57,52,63)(47,56)(48,61,54,55,51,58)(50,62)(53,59)>;

G:=Group( (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,46)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,28)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,10)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,29)(2,34,8,28,5,31)(3,30,6,36,9,33)(4,35)(7,32)(10,24,13,21,16,27)(11,20)(12,25,18,19,15,22)(14,26)(17,23)(37,69,40,66,43,72)(38,65)(39,70,45,64,42,67)(41,71)(44,68)(46,60,49,57,52,63)(47,56)(48,61,54,55,51,58)(50,62)(53,59) );

G=PermutationGroup([[(1,47),(2,48),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,46),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,64),(20,65),(21,66),(22,67),(23,68),(24,69),(25,70),(26,71),(27,72),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,28),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,55),(47,56),(48,57),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,10),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,29),(2,34,8,28,5,31),(3,30,6,36,9,33),(4,35),(7,32),(10,24,13,21,16,27),(11,20),(12,25,18,19,15,22),(14,26),(17,23),(37,69,40,66,43,72),(38,65),(39,70,45,64,42,67),(41,71),(44,68),(46,60,49,57,52,63),(47,56),(48,61,54,55,51,58),(50,62),(53,59)]])

80 conjugacy classes

class 1 2A···2G2H···2O3A3B3C6A···6G6H···6U6V···6AK9A9B9C18A···18U
order12···22···23336···66···66···699918···18
size11···19···92332···23···39···96666···6

80 irreducible representations

dim111111222266
type+++++++
imageC1C2C2C3C6C6S3D6C3×S3S3×C6C9⋊C6C2×C9⋊C6
kernelC23×C9⋊C6C22×C9⋊C6C23×3- 1+2C23×D9C22×D9C22×C18C2×C62C62C22×C6C2×C6C23C22
# reps114122821721417

Matrix representation of C23×C9⋊C6 in GL10(𝔽19)

1000000000
0100000000
00180000000
00018000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
18000000000
01800000000
0010000000
0001000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
18000000000
01800000000
00180000000
00018000000
00001800000
00000180000
00000018000
00000001800
00000000180
00000000018
,
18100000000
18000000000
00181000000
00180000000
000011181700
00000011800
00000001801
0000110181818
00000001800
00001001800
,
0800000000
8000000000
00011000000
00110000000
0000010000
0000100000
0000000010
000011001818
000011181800
0000000100

G:=sub<GL(10,GF(19))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18],[18,18,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,17,18,18,18,18,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,1,18,0,0],[0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0] >;

C23×C9⋊C6 in GAP, Magma, Sage, TeX

C_2^3\times C_9\rtimes C_6
% in TeX

G:=Group("C2^3xC9:C6");
// GroupNames label

G:=SmallGroup(432,559);
// by ID

G=gap.SmallGroup(432,559);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,10085,537,292,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^9=e^6=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^2>;
// generators/relations

׿
×
𝔽